
NAG C Library Function Document

nag_moments_ratio_quad_forms (g01nbc)

1 Purpose

nag_moments_ratio_quad_forms (g01nbc) computes the moments of ratios of quadratic forms in Normal
variables and related statistics.

2 Specification

void nag_moments_ratio_quad_forms (Nag_OrderType order, Nag_MomentType ratio_type,
Nag_IncludeMean mean, Integer n, const double a[], Integer pda,
const double b[], Integer pdb, const double c[], Integer pdc,
const double ela[], const double emu[], const double sigma[], Integer pdsig,
Integer l1, Integer l2, Integer *lmax, double rmom[], double *abserr,
double eps, NagError *fail)

3 Description

Let x have an n-dimensional multivariate Normal distribution with mean � and variance-covariance matrix
�. Then for a symmetric matrix A and symmetric positive semi-definite matrix B,
nag_moments_ratio_quad_forms (g01nbc) computes a subset, l1 to l2, of the first 12 moments of the
ratio of quadratic forms

R ¼ xTAx=xTBx:

The sth moment (about the origin) is defined as

EðRsÞ; ð1Þ
where E denotes the expectation. Alternatively, this function will compute the following expectations:

EðRsðaTxÞÞ ð2Þ
and

EðRsðxTCxÞÞ; ð3Þ
where a is a vector of length n and C is a n by n symmetric matrix, if they exist. In the case of (2) the
moments are zero if � ¼ 0.

The conditions of theorems 1, 2 and 3 of Magnus (1986) and Magnus (1990) are used to check for the
existence of the moments. If all the requested moments do not exist, the computations are carried out for
those moments that are requested up to the maximum that exist, lMAX.

This function is based on the routine QRMOM written by Magnus and Pesaran (1993) and based on the
theory given by Magnus (1986) and Magnus (1990). The computation of the moments requires first the

computation of the eigenvectors of the matrix LTBL, where LLT ¼ �. The matrix LTBL must be
positive semi-definite and not null. Given the eigenvectors of this matrix, a function which has to be
integrated over the range zero to infinity can be computed. This integration is performed using
nag_1d_quad_inf (d01amc).

4 References

Magnus J R (1986) The exact moments of a ratio of quadratic forms in Normal variables Ann. ´conom.

Statist. 4 95–109

Magnus J R (1990) On certain moments relating to quadratic forms in Normal variables: Further results
Sankhy�aa, Ser. B 52 1–13

g01 – Simple Calculations on Statistical Data g01nbc

[NP3645/7] g01nbc.1

Magnus J R and Pesaran B (1993) The evaluation of cumulants and moments of quadratic forms in
Normal variables (CUM): Technical description Comput. Statist. 8 39–45

Magnus J R and Pesaran B (1993) The evaluation of moments of quadratic forms and ratios of quadratic
forms in Normal variables: Background, motivation and examples Comput. Statist. 8 47–55

5 Parameters

1: order – Nag_OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order ¼ Nag RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order ¼ Nag RowMajor or Nag ColMajor.

2: ratio_type – Nag_MomentType Input

On entry: indicates the moments of which function are to be computed.

If ratio type ¼ Nag RatioMoments (Ratio), EðRsÞ is computed.

If ratio type ¼ Nag LinearRatio (Linear with ratio), EðRsðaTxÞÞ is computed.

If ratio type ¼ Nag QuadRatio (Quadratic with ratio), EðRsðxTCxÞÞ is computed.

Constraint: ratio type ¼ Nag RatioMoments, Nag LinearRatio or Nag QuadRatio.

3: mean – Nag_IncludeMean Input

On entry: indicates if the mean, �, is zero.

If mean ¼ Nag MeanZero, � is zero.

If mean ¼ Nag MeanInclude, the value of � is supplied in emu.

Constraint: mean ¼ Nag MeanZero or Nag MeanInclude.

4: n – Integer Input

On entry: the dimension of the quadratic form, n.

Constraint: n > 1.

5: a½dim� – const double Input

Note: the dimension, dim, of the array a must be at least pda� n.

If order ¼ Nag ColMajor, the ði; jÞth element of the matrix A is stored in a½ðj� 1Þ � pdaþ i� 1� and
if order ¼ Nag RowMajor, the ði; jÞth element of the matrix A is stored in a½ði� 1Þ � pdaþ j� 1�.
On entry: the n by n symmetric matrix A. Only the lower triangle is referenced.

6: pda – Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array a.

Constraint: pda � n.

7: b½dim� – const double Input

Note: the dimension, dim, of the array b must be at least pdb� n.

If order ¼ Nag ColMajor, the ði; jÞth element of the matrix B is stored in b½ðj� 1Þ � pdbþ i� 1� and
if order ¼ Nag RowMajor, the ði; jÞth element of the matrix B is stored in b½ði� 1Þ � pdbþ j� 1�.

g01nbc NAG C Library Manual

g01nbc.2 [NP3645/7]

On entry: the n by n positive semi-definite symmetric matrix B. Only the lower triangle is
referenced.

Constraint: the matrix B must be positive semi-definite.

8: pdb – Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array b.

Constraint: pdb � n.

9: c½dim� – const double Input

Note: the dimension, dim, of the array c must be at least

maxð1; pdc� nÞ when ratio type ¼ Nag QuadRatio;

1 otherwise.

If order ¼ Nag ColMajor, the ði; jÞth element of the matrix C is stored in c½ðj� 1Þ � pdcþ i� 1� and
if order ¼ Nag RowMajor, the ði; jÞth element of the matrix C is stored in c½ði� 1Þ � pdcþ j� 1�.
On entry: if ratio type ¼ Nag QuadRatio, c must contain the n by n symmetric matrix C; only the
lower triangle is referenced. If ratio type 6¼ Nag QuadRatio, c is not referenced.

10: pdc – Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array c.

Constraints:

if ratio type ¼ Nag QuadRatio, pdc � n;
otherwise pdc � 1.

11: ela½dim� – const double Input

Note: the dimension, dim, of the array ela must be at least n when ratio type ¼ Nag LinearRatio
and at least 1 otherwise.

On entry: if ratio type ¼ Nag LinearRatio, ela must contain the vector a of length n, otherwise a
is not referenced.

12: emu½dim� – const double Input

Note: the dimension, dim, of the array emu must be at least n when mean ¼ Nag MeanInclude
and at least 1 otherwise.

On entry: if mean ¼ Nag MeanInclude, emu must contain the n elements of the vector �. If
mean ¼ Nag MeanZero, emu is not referenced.

13: sigma½dim� – const double Input

Note: the dimension, dim, of the array sigma must be at least pdsig� n.

If order ¼ Nag ColMajor, the ði; jÞth element of the matrix is stored in sigma½ðj� 1Þ � pdsigþ i� 1�
and i f order ¼ Nag RowMajor, t h e ði; jÞt h e l emen t o f t h e ma t r i x i s s t o r ed i n

sigma½ði� 1Þ � pdsigþ j� 1�.

On entry: the n by n variance-covariance matrix �. Only the lower triangle is referenced.

Constraint: the matrix � must be positive-definite.

14: pdsig – Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array sigma.

Constraint: pdsig � n.

g01 – Simple Calculations on Statistical Data g01nbc

[NP3645/7] g01nbc.3

15: l1 – Integer Input

On entry: the first moment to be computed, l1.

Constraint: 0 < l1 � l2.

16: l2 – Integer Input

On entry: the last moment to be computed, l2.

Constraint: l1 � l2 � 12.

17: lmax – Integer * Output

On exit: the highest moment computed, lMAX. This will be l2 on successful exit.

18: rmom½l2� l1þ 1� – double Output

On exit: the l1 to lMAX moments.

19: abserr – double * Output

On exit: the estimated maximum absolute error in any computed moment.

20: eps – double Input

On entry: the relative accuracy required for the moments, this value is also used in the checks for

the existence of the moments. If eps ¼ 0:0, a value of
ffiffi
�

p
where � is the machine precision used.

Constraint: eps ¼ 0:0 or eps � machine precision.

21: fail – NagError * Input/Output

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

On entry, n = hvaluei.
Constraint: n > 1.

On entry, pda ¼ hvaluei.
Constraint: pda > 0.

On entry, pdb ¼ hvaluei.
Constraint: pdb > 0.

On entry, pdc ¼ hvaluei.
Constraint: pdc > 0.

On entry, pdsig ¼ hvaluei.
Constraint: pdsig > 0.

On entry, l2 ¼ hvaluei.
Constraint: l2 � 12.

On entry, l1 ¼ hvaluei.
Constraint: l1 � 1.

NE_INT_2

On entry, pda ¼ hvaluei, n ¼ hvaluei.
Constraint: pda � n.

On entry, pdb ¼ hvaluei, n ¼ hvaluei.
Constraint: pdb � n.

g01nbc NAG C Library Manual

g01nbc.4 [NP3645/7]

On entry, pdsig ¼ hvaluei, n ¼ hvaluei.
Constraint: pdsig � n.

On entry, l2 < l1: l1 ¼ hvaluei, l2 ¼ hvaluei.
On entry, pdc < n: pdc ¼ hvaluei, n ¼ hvaluei.

NE_ENUM_INT_2

On entry, ratio type ¼ hvaluei, n ¼ hvaluei, pdc ¼ hvaluei.
Constraint: if ratio type ¼ Nag QuadRatio, pdc � n;
otherwise pdc � 1.

NE_ACCURACY

Full accuracy not achieved in integration.

NE_EIGENVALUES

Failure in computing eigenvalues.

NE_MOMENTS

Only hvaluei moments exist, less than l1 ¼ hvaluei.

NE_POS_DEF

On entry, sigma is not positive-definite.

NE_POS_SEMI_DEF

The matrix LBL is not positive semi-definite or is null.

On entry, b is not positive semi-definite or is null.

NE_REAL

On entry, if eps 6¼ 0, eps < machine precision: eps ¼ hvaluei.

NE_SOME_MOMENTS

Only hvaluei moments exist, less than l2 = hvaluei.

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter hvaluei had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy

The relative accuracy is specified by eps and an estimate of the maximum absolute error for all computed
moments is returned in abserr.

8 Further Comments

None.

g01 – Simple Calculations on Statistical Data g01nbc

[NP3645/7] g01nbc.5

9 Example

The example is given by Magnus and Pesaran (1993) and considers the simple autoregression:

yt ¼ �yt�1 þ ut; t ¼ 1; 2; . . . ; n;

where {ut} is a sequence of independent Normal variables with mean zero and variance one, and y0 is

known. The least-squares estimate of �, �̂�, is given by

�̂� ¼
Pn

t¼2 ytyt�1Pn
t¼2 y

2
t

:

Thus �̂� can be written as a ratio of quadratic forms and its moments computed using
nag_moments_ratio_quad_forms (g01nbc). The matrix A is given by

Aðiþ 1; iÞ ¼ 1
2
; i ¼ 1; 2; . . .n� 1;

Aði; jÞ ¼ 0; otherwise;

and the matrix B is given by

Bði; iÞ ¼ 1; i ¼ 1; 2; . . .n� 1;

Bði; jÞ ¼ 0; otherwise:

The value of � can be computed using the relationships

varðytÞ ¼ �2 varðyt�1Þ þ 1

and

covðytytþkÞ ¼ � covðytytþk�1Þ

for k � 0 and varðy1Þ ¼ 1.

The values of �, y0, n, and the number of moments required are read in and the moments computed and
printed.

9.1 Program Text

/* nag_moments_ratio_quad_forms (g01nbc) Example Program.
*
* Copyright 2001 Numerical Algorithms Group.
*
* Mark 7, 2001.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagg01.h>

int main(void)
{

/* Scalars */
double abserr, beta, y0, eps;
Integer exit_status, i, j, l1, l2, lmax, n, pda, pdb, pdsigma;
NagError fail;
Nag_OrderType order;

/* Arrays */
double *a=0, *b=0, *c=0, *ela=0, *emu=0, *rmom=0, *sigma=0;

#ifdef NAG_COLUMN_MAJOR
#define A(I,J) a[(J-1)*pda + I - 1]
#define B(I,J) b[(J-1)*pdb + I - 1]
#define SIGMA(I,J) sigma[(J-1)*pdsigma + I - 1]

order = Nag_ColMajor;

g01nbc NAG C Library Manual

g01nbc.6 [NP3645/7]

#else
#define A(I,J) a[(I-1)*pda + J - 1]
#define B(I,J) b[(I-1)*pdb + J - 1]
#define SIGMA(I,J) sigma[(I-1)*pdsigma + J - 1]

order = Nag_RowMajor;
#endif

INIT_FAIL(fail);
exit_status = 0;
Vprintf("g01nbc Example Program Results\n");

/* Skip heading in data file */
Vscanf("%*[^\n] ");
Vscanf("%lf%lf%*[^\n] ", &beta, &y0);
Vscanf("%ld%ld%ld%*[^\n] ", &n, &l1, &l2);

/* Allocate memory */
if (!(a = NAG_ALLOC(n * n, double)) ||

!(b = NAG_ALLOC(n * n, double)) ||
!(c = NAG_ALLOC(n * n, double)) ||
!(ela = NAG_ALLOC(n, double)) ||
!(emu = NAG_ALLOC(n, double)) ||
!(rmom = NAG_ALLOC(l2-l1+1, double)) ||
!(sigma = NAG_ALLOC(n * n, double)))

{
Vprintf("Allocation failure\n");
exit_status = -1;
goto END;

}
pda = n;
pdb = n;
pdsigma = n;

/* Compute A, EMU, and SIGMA for simple autoregression */

for (i = 1; i <= n; ++i)
{

for (j = i; j <= n; ++j)
{

A(j, i) = 0.0;
B(j, i) = 0.0;

}
}

for (i = 1; i <= n - 1; ++i)
{

A(i + 1, i) = 0.5;
B(i, i) = 1.0;

}
emu[0] = y0 * beta;
for (i = 1; i <= n - 1; ++i)

emu[i] = beta * emu[i - 1];
SIGMA(1, 1) = 1.0;
for (i = 2; i <= n; ++i)

SIGMA(i, i) = beta * beta * SIGMA(i - 1, i - 1) + 1.0;
for (i = 1; i <= n; ++i)

{
for (j = i + 1; j <= n; ++j)

SIGMA(j, i) = beta * SIGMA(j - 1, i);
}

eps = 0.0;
g01nbc(order, Nag_RatioMoments, Nag_MeanInclude, n,

a, n, b, n, c, n, ela, emu, sigma, n, l1, l2,
&lmax, rmom, &abserr, eps, &fail);

if (fail.code == NE_NOERROR || fail.code == NE_SOME_MOMENTS
|| fail.code == NE_ACCURACY)

{

Vprintf("\n");
Vprintf(" n = %3ld beta = %6.3f y0 = %6.3f\n", n, beta, y0);

g01 – Simple Calculations on Statistical Data g01nbc

[NP3645/7] g01nbc.7

Vprintf("\n");
Vprintf(" Moments\n");
Vprintf("\n");

j = 0;
for (i = l1; i <= lmax; ++i)

{
++j;
Vprintf("%3ld%12.3e\n", i, rmom[j - 1]);

}
}

else
{

Vprintf("Error from g01nbc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
END:
if (a) NAG_FREE(a);
if (b) NAG_FREE(b);
if (c) NAG_FREE(c);
if (ela) NAG_FREE(ela);
if (emu) NAG_FREE(emu);
if (rmom) NAG_FREE(rmom);
if (sigma) NAG_FREE(sigma);

return exit_status;
}

9.2 Program Data

g01nbc Example Program Data

0.8 1.0 : Beta Y0

10 1 3 : N L1 L1

9.3 Program Results

g01nbc Example Program Results

n = 10 beta = 0.800 y0 = 1.000

Moments

1 6.820e-01
2 5.357e-01
3 4.427e-01

g01nbc NAG C Library Manual

g01nbc.8 (last) [NP3645/7]

	g01nbc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	ratio_type
	mean
	n
	a
	pda
	b
	pdb
	c
	pdc
	ela
	emu
	sigma
	pdsig
	l1
	l2
	lmax
	rmom
	abserr
	eps
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_ENUM_INT_2
	NE_ACCURACY
	NE_EIGENVALUES
	NE_MOMENTS
	NE_POS_DEF
	NE_POS_SEMI_DEF
	NE_REAL
	NE_SOME_MOMENTS
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

