g01 — Simple Calculations on Statistical Data g01nbc

NAG C Library Function Document

nag moments_ratio_quad_forms (g01nbc)

1 Purpose

nag_moments ratio_quad forms (g01nbc) computes the moments of ratios of quadratic forms in Normal
variables and related statistics.

2 Specification

void nag_moments_ratio_quad_forms (Nag_OrderType order, Nag_MomentType ratio_type,
Nag_IncludeMean mean, Integer n, const double a[], Integer pda,
const double b[], Integer pdb, const double ¢[], Integer pdc,
const double ela[], const double emul[], const double sigma[], Integer pdsig,
Integer 11, Integer 12, Integer *lmax, double rmom/[], double *abserr,
double eps, NagError *fail)

3 Description

Let x have an n-dimensional multivariate Normal distribution with mean p and variance-covariance matrix
> Then for a symmetric matrix A and symmetric positive semi-definite matrix B,
nag_moments_ratio_quad forms (g01nbc) computes a subset, /; to l,, of the first 12 moments of the
ratio of quadratic forms

R =" Az /2" Bz.

The sth moment (about the origin) is defined as

E(R®), (1)
where E denotes the expectation. Alternatively, this function will compute the following expectations:
E(R*(a’x)) (2)
and
E(R'(z" Cx)), (3)

where «a is a vector of length n and C is a n by n symmetric matrix, if they exist. In the case of (2) the
moments are zero if u = 0.

The conditions of theorems 1, 2 and 3 of Magnus (1986) and Magnus (1990) are used to check for the
existence of the moments. If all the requested moments do not exist, the computations are carried out for
those moments that are requested up to the maximum that exist, lyax-

This function is based on the routine QRMOM written by Magnus and Pesaran (1993) and based on the
theory given by Magnus (1986) and Magnus (1990). The computation of the moments requires first the
computation of the eigenvectors of the matrix L’ BL, where LL” = %. The matrix L” BL must be
positive semi-definite and not null. Given the eigenvectors of this matrix, a function which has to be
integrated over the range zero to infinity can be computed. This integration is performed using
nag 1d quad inf (dOlamc).

4 References

Magnus J R (1986) The exact moments of a ratio of quadratic forms in Normal variables Ann. conom.
Statist. 4 95-109

Magnus J R (1990) On certain moments relating to quadratic forms in Normal variables: Further results
Sankhya, Ser. B 52 1-13

[NP3645/7] g0Inbc.1

g01nbc NAG C Library Manual

Magnus J R and Pesaran B (1993) The evaluation of cumulants and moments of quadratic forms in
Normal variables (CUM): Technical description Comput. Statist. 8 39-45

Magnus J R and Pesaran B (1993) The evaluation of moments of quadratic forms and ratios of quadratic
forms in Normal variables: Background, motivation and examples Comput. Statist. 8 47-55

5

1:

Parameters

order — Nag OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order = Nag_RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order = Nag_RowMajor or Nag_ColMajor.

ratio_type — Nag MomentType Input
On entry: indicates the moments of which function are to be computed.

If ratio_type = Nag_RatioMoments (Ratio), F(R’) is computed.
If ratio_type = Nag_LinearRatio (Linear with ratio), E(R*(a’z)) is computed.

If ratio_type = Nag_QuadRatio (Quadratic with ratio), F(R*(z’ Cz)) is computed.
Constraint: ratio_type = Nag_RatioMoments, Nag_LinearRatio or Nag_QuadRatio.

mean — Nag_IncludeMean Input
On entry: indicates if the mean, u, is zero.

If mean = Nag_MeanZero, p is zero.

If mean = Nag_MeanInclude, the value of p is supplied in emu.

Constraint: mean = Nag_MeanZero or Nag_MeanInclude.

n — Integer Input
On entry: the dimension of the quadratic form, n.

Constraint: n > 1.

a[dim| — const double Input
Note: the dimension, dim, of the array a must be at least pda x n.

If order = Nag_ColMajor, the (7, j)th element of the matrix A is stored in a[(j — 1) x pda + i — 1] and
if order = Nag_RowMajor, the (i, j)th element of the matrix A is stored in a[(i — 1) x pda+ j — 1].

On entry: the n by n symmetric matrix A. Only the lower triangle is referenced.

pda — Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array a.

Constraint: pda > n.

b[dim] — const double Input
Note: the dimension, dim, of the array b must be at least pdb x n.

If order = Nag_ColMajor, the (7, j)th element of the matrix B is stored in b[(j — 1) x pdb + ¢ — 1] and
if order = Nag_RowMajor, the (i, j)th element of the matrix B is stored in b[(¢ — 1) x pdb + j — 1].

g0Inbc.2 [NP3645/7]

201 — Simple Calculations on Statistical Data g01nbc

10:

11:

12:

13:

14:

On entry: the n by n positive semi-definite symmetric matrix B. Only the lower triangle is
referenced.

Constraint: the matrix B must be positive semi-definite.

pdb — Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array b.

Constraint. pdb > n.

c[dim] — const double Input

Note: the dimension, dim, of the array ¢ must be at least
max(1,pde X n) when ratio_type = Nag_QuadRatio;
1 otherwise.

If order = Nag_ColMajor, the (i, j)th element of the matrix C is stored in ¢[(j — 1) x pde + 4 — 1] and
if order = Nag_RowMajor, the (7,7)th element of the matrix C is stored in ¢[(i — 1) x pde + j — 1].

On entry: if ratio_type = Nag_QuadRatio, ¢ must contain the n by n symmetric matrix C'; only the
lower triangle is referenced. If ratio_type # Nag_QuadRatio, ¢ is not referenced.
pdc — Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array c.

Constraints:
if ratio_type = Nag_QuadRatio, pdc > n;
otherwise pdc > 1.
ela[dim| — const double Input

Note: the dimension, dim, of the array ela must be at least n when ratio_type = Nag_LinearRatio
and at least 1 otherwise.

On entry: if ratio_type = Nag_LinearRatio, ela must contain the vector a of length n, otherwise a
is not referenced.
emu(dim| — const double Input

Note: the dimension, dim, of the array emu must be at least n when mean = Nag_MeanlInclude
and at least 1 otherwise.

On entry: if mean = Nag_MeanInclude, emu must contain the n elements of the vector p. If
mean = Nag_MeanZero, emu is not referenced.

sigma|dim| — const double Input
Note: the dimension, dim, of the array sigma must be at least pdsig x n.

If order = Nag_ColMajor, the (¢, j)th element of the matrix is stored in sigma[(j — 1) x pdsig + i — 1]
and if order = Nag RowMajor, the (i,j)th element of the matrix is stored in
sigma[(i — 1) x pdsig + j — 1].

On entry: the n by n variance-covariance matrix 3. Only the lower triangle is referenced.

Constraint: the matrix X must be positive-definite.

pdsig — Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array sigma.

Constraint. pdsig > n.

[NP3645/7] g0Inbc.3

g01nbc NAG C Library Manual

15:

16:

17:

19:

20:

21:

6

11 — Integer Input
On entry: the first moment to be computed, /;.

Constraint: 0 <11 <12.

12 — Integer Input
On entry: the last moment to be computed, /,.

Constraint: 11 <12 < 12.

Imax — Integer * Output

On exit: the highest moment computed, ly;ax. This will be [, on successful exit.

rmom(12 — 11 + 1] — double Output

On exit. the 1| to [y ax moments.

abserr — double * Output

On exit: the estimated maximum absolute error in any computed moment.

eps — double Input

On entry: the relative accuracy required for the moments, this value is also used in the checks for
the existence of the moments. If eps = 0.0, a value of /e where € is the machine precision used.

Constraint. eps = 0.0 or eps > machine precision.

fail — NagError * Input/Output

The NAG error parameter (see the Essential Introduction).

Error Indicators and Warnings

NE_INT

On entry, n = (value).
Constraint: n > 1.

On entry, pda = (value).
Constraint: pda > 0.

On entry, pdb = (value).
Constraint: pdb > 0.

On entry, pde = (value).
Constraint: pde > 0.

On entry, pdsig = (value).
Constraint: pdsig > 0.

On entry, 12 = (value).
Constraint: 12 < 12.

On entry, I1 = (value).
Constraint: 11 > 1.

NE_INT 2

On entry, pda = (value), n = (value).
Constraint: pda > n.

On entry, pdb = (value), n = (value).
Constraint: pdb > n.

g0Inbc.4 [NP3645/7]

201 — Simple Calculations on Statistical Data g01nbc

On entry, pdsig = (value), n = (value).
Constraint: pdsig > n.

On entry, 12 < 11: 11 = (value), 12 = (value).
On entry, pde < n: pde = (value), n = (value).
NE_ENUM_INT 2

On entry, ratio_type = (value), n = (value), pde = (value).
Constraint: if ratio_type = Nag_QuadRatio, pdc > n;
otherwise pdc > 1.

NE_ACCURACY

Full accuracy not achieved in integration.

NE_EIGENVALUES

Failure in computing eigenvalues.

NE_MOMENTS

Only (value) moments exist, less than 11 = (value).

NE_POS_DEF

On entry, sigma is not positive-definite.

NE_POS_SEMI_DEF
The matrix LBL is not positive semi-definite or is null.

On entry, b is not positive semi-definite or is null.
NE_REAL

On entry, if eps # 0, eps < machine precision: eps = (value).
NE_SOME_MOMENTS

Only (value) moments exist, less than 12 = (value).

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD PARAM

On entry, parameter (value) had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy
The relative accuracy is specified by eps and an estimate of the maximum absolute error for all computed

moments is returned in abserr.

8 Further Comments

None.

[NP3645/7] g0Inbc.5

g01nbc NAG C Library Manual

9 Example

The example is given by Magnus and Pesaran (1993) and considers the simple autoregression:
yt:ﬂyt—l+ut7 t:1727”'7n
where {u;} is a sequence of independent Normal variables with mean zero and variance one, and y, is

known. The least-squares estimate of [, B, is given by

B Zt 2?nyr L
Zt 23/t

Thus 3 can be written as a ratio of quadratic forms and its moments computed using
nag_moments_ratio_quad forms (g01nbc). The matrix A is given by

A(i+1,4) =1, i=1,2,...n—1;

A(i,5) =0, otherwise,

and the matrix B is given by

B(i,j) =0, otherwise.
The value of ¥ can be computed using the relationships
var(y,) = 3 var(y,_;) + 1
and

coV(YYpar) = BCOV(YsYik1)
for k£ > 0 and var(y,) = 1.

The values of (3, y,, n, and the number of moments required are read in and the moments computed and
printed.

9.1 Program Text

/* nag_moments_ratio_quad_forms (gOlnbc) Example Program.
* Copyright 2001 Numerical Algorithms Group.

* Mark 7, 2001.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagg0l.h>

int main(void)

{

/* Scalars */

double abserr, beta, yO, eps;

Integer exit_status, i, j, 11, 12, lmax, n, pda, pdb, pdsigma;
NagError fail;

Nag_OrderType order;

/* Arrays */
double *a=0, *b=0, *c=0, *ela=0, *emu=0, *rmom=0, *sigma=0;

#ifdef NAG_COLUMN_MAJOR

#define A(I,J) al(J-1)*pda + I - 1]

#define B(I,J) b[(J-1)*pdb + I - 1]

#define SIGMA(I,J) sigmal(J-1)*pdsigma + I - 1]
order = Nag_ColMajor;

g01nbc.6 [NP3645/7]

g01 — Simple Calculations on Statistical Data

#else

#define A(I,J) al[(I-1)*pda + J - 1]

#define B(I,J) b[(I-1)*pdb + J - 1]

#define SIGMA(I,J) sigmal(I-1)*pdsigma + J - 1]
order = Nag_RowMajor;

#endif

INIT_FAIL(fail);
exit_status = 0;
Vprintf ("gOlnbc Example Program Results\n");

/* Skip heading in data file */

Vscanf ("s*[*\n] ");

Vscanf ("$1f%1fs*x["\n] ", &beta, &y0);
Vscanf ("%$1d%1d%1d%s*["\n] ", &n, &l1l, &l2);

/* Allocate memory */
if (!(a = NAG_ALLOC(n * n, double)) ||
(b = NAG_ALLOC(n * n, double)) ||
(c = NAG_ALLOC(n * n, double)) ||
(ela = NAG_ALLOC(n, double)) ||
(emu = NAG_ALLOC(n, double)) ||
(rmom = NAG_ALLOC(12-11+1, double)) ||
(sigma = NAG_ALLOC(n * n, double)))

Vprintf ("Allocation failure\n");
exit_status = -1;
goto END;
}
pda = n;
pdb n;
pdsigma = n;

/* Compute A, EMU, and SIGMA for simple autoregression */

for (i = 1; 1 <= n; ++1)
{
for (j = 1i; j <= n; ++3)
{
A(§, 1) = 0.0;
B(jl i) = 0.0;
¥
}
for (i = 1; i <= n - 1; ++1i)
{
A(i + 1, i) = 0.5;
B(i, i) = 1.0;
}
emu[0] = yO * beta;
for (i =1; 1 <= n - 1; ++1)
emu[i] beta * emuli - 1];

SIGMA(1, 1) = 1.0;
for (i 2; 1 <= n; ++1)

SIGMA(i, i) = beta * beta * SIGMA(i - 1, i - 1) + 1.0;
for (i = 1; i <= n; ++1i)
{

for (j =1 + 1; j <= n; ++j)
SIGMA(j, 1) = beta * SIGMA(j - 1, 1i);

eps = 0.0;

gOlnbc(order, Nag_RatioMoments, Nag_MeanInclude, n,
a, n, b, n, ¢, n, ela, emu, sigma, n, 11, 12,
&lmax, rmom, &abserr, eps, &fail);

if (fail.code == NE_NOERROR || fail.code == NE_SOME_MOMENTS
|| fail.code == NE_ACCURACY)

Vprintf ("\n");
Vprintf (" n = %31d beta = %6.3f y0O = %6.3f\n", n, beta, yo0);

[NP3645/7]

g01nbc

g01nbc.7

g01nbc

Vprintf ("\n") ;
Vprintf (" Moments\n") ;
Vprintf ("\n") ;

j = Ol
for (i = 11; i <= lmax; ++1i)
{
t+3;
Vprintf ("$31d%12.3e\n", i, rmom[j - 1]);
¥
}
else
{
Vprintf ("Error from gOlnbc.\n%s\n", fail.message);
exit_status = 1;
goto END;
}
END:
if (a) NAG_FREE(a);
if (b) NAG_FREE (b);
if (c) NAG_FREE(c);
if (ela) NAG_FREE(ela);

if (emu) NAG_FREE (emu) ;
if (rmom) NAG_FREE (rmom) ;
if (sigma) NAG_FREE (sigma) ;

return exit_status;

9.2 Program Data

gO0lnbc Example Program Data
0.8 1.0 : Beta YO

10 1 3 : N L1 L1

9.3 Program Results

gO0lnbc Example Program Results

n = 10 beta = 0.800 yO = 1.000
Moments
1 6.820e-01
2 5.357e-01

3 4.427e-01

NAG C Library Manual

g01nbc.8 (last)

[NP3645/7]

	g01nbc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	ratio_type
	mean
	n
	a
	pda
	b
	pdb
	c
	pdc
	ela
	emu
	sigma
	pdsig
	l1
	l2
	lmax
	rmom
	abserr
	eps
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_ENUM_INT_2
	NE_ACCURACY
	NE_EIGENVALUES
	NE_MOMENTS
	NE_POS_DEF
	NE_POS_SEMI_DEF
	NE_REAL
	NE_SOME_MOMENTS
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

